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Abstract: Most diseases start with a few main symptoms that are unique to them. Recognising these initial symptoms can
preserve countless lives and improve the provision of healthcare. A new way to anticipate common diseases is discussed in
this work. It is based on an interactive, user-friendly model that anyone may use. The rapid advancement of Al has opened up
several avenues to enhance diagnostic processes in healthcare. This effort aims to improve the effectiveness of these initial
medical tests, particularly in underserved areas. The analysis indicates that cardiovascular illnesses are still one of the top
causes of death in the world, with 18.6 million fatalities in 2019, or roughly 36% of all deaths worldwide. Finding and treating
symptoms like chest pain, shortness of breath, or fatigue early on greatly lowers the risk of bad outcomes linked to heart disease.
An illness like tuberculosis, even though it isn't very common, can be diagnosed and treated early, which can raise the cure
rate to 85-95%. The study demonstrates that the suggested model can predict diseases based on symptom input with 70.12%
accuracy, establishing it as a valuable tool in medical diagnostics.
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1. Introduction

The key point in Artificial Intelligence (Al) is the capability of a machine to imitate intelligent human behaviour. The Al
systems utilise human neural network analysis and knowledge graph mapping for information processing, much like a human
would. Since thousands of parameters are processed simultaneously, the existing models require a substantial amount of
computational power to be trained. Recent research has seen rapid developments in Al capabilities, supporting sustainable and
effective methods in various areas. As such, Al intervention is initiated in different healthcare solutions, complemented by its
pattern recognition strengths. The process of training an Al model involves several steps, including data collection, pre-
processing, model selection, and extensive training to identify patterns and relationships. In the healthcare space, we have
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tremendous potential for Al applications in disease diagnosis and prediction. Conventional diagnostic procedures comprise
subjective evaluations performed by healthcare providers, and may be a lengthy process, and (in some cases) also prone to
human error. Al-based models provide an objective and efficient means of analysing symptoms to predict disease, and act as
valuable tools to assist healthcare providers in making faster, more accurate diagnoses. This is a game-changing introduction
to disease prediction through the Al-driven platform for preliminary medical assessments. The first aspect of the process is
illustrated in Figure 1, where symptoms are captured through an interactive interface by users. The symptoms are interpreted
by a proposed trained Al model, which analyses the symptom patterns against its knowledge base. The model identifies
probable diseases based on the symptom constellation and calculates confidence levels for each prediction. This pathway not
only enables the receipt of preliminary assessments but also provides clear steps on what to do if the predicted conditions arise,
thus likely to be effective in minimising delays.

2. Literature Review

The study of Artificial Intelligence for Clinical Prediction finds eight critical areas where Al enhances clinical prediction,
including diagnosis, prognosis, and tailored therapy, particularly in oncology and radiology. Automated disease detection and
prediction enabled by Al are crucial in enabling medical personnel to provide patients with appropriate care. While such
predictive tools have been extensively studied in resource-rich languages such as English, this paper focuses on automatically
predicting disease categories from symptoms described in the Afaan Oromo language using several classification algorithms.
Al is now an important part of modern disease detection. There is a lot of new research on medical imaging, multimodal data,
and privacy-preserving techniques. Litjens et al. [1] early survey work methodically analysed deep learning in medical image
processing, laying the groundwork for future research possibilities. Since that time, significant research has demonstrated that
deep neural networks can perform as well as or better than human experts on a wide range of detection tasks. Rajpurkar et al.
[2] introduced CheXNet, a 121-layer convolutional neural network trained on the ChestX-rayl4 dataset, which attained
radiologist-level accuracy in pneumonia detection. Esteva et al. [3] also utilised transfer learning to classify skin lesions,
reporting that their approach performed as well as a dermatologist in identifying melanoma.

In the field of ophthalmology, Gulshan et al. [4] confirmed the efficacy of a deep learning system for identifying referable
diabetic retinopathy through retinal fundus images, demonstrating elevated sensitivity and specificity across several clinical
locations. This research underscores the adaptability and therapeutic applicability of imaging-based Al systems. Convolutional
neural networks (CNNs), 3D CNNSs, and U-Net variations continue to be the most popular methods for segmentation and
classification tasks. Recent improvements have explored Vision Transformers and ensemble approaches to enhance their
resilience. Transfer learning is commonly utilised to address the scarcity of labelled data, while preprocessing methods and
region-of-interest extraction improve interpretability [13]. Even though models work well within a dataset, they often fail to
perform well when applied to datasets from outside the dataset or various imaging devices. Federated learning (FL) has emerged
as a promising approach to addressing data silos and privacy concerns. The reviews by Rehman et al. [6] demonstrate how FL
enables institutions to collaborate on training without disclosing raw patient data.

This makes the models more diverse and robust while maintaining patient information privacy. Nonetheless, variability in local
datasets and communication efficiency continue to pose substantial obstacles to widespread implementation. Another important
area of research is prejudice and explainability. For clinical use, Al needs to be reliable; however, many people refer to models
as “black boxes.” To facilitate understanding, methods such as saliency maps, attention mechanisms, and uncertainty
quantification have been combined; however, their reliability remains a topic of debate [7]. Moreover, numerous studies warn
that algorithmic bias stemming from demographic disparities in training data can compromise fairness and therapeutic safety.
Overall, related studies show that Al-based disease detection has made great strides in several areas of technology.
Nevertheless, significant research deficiencies persist in achieving cross-site generalisation, tackling low-prevalence diseases
with scarce data, synthesising multimodal information, and conducting deployment studies that evaluate patient outcomes.
Future advancements will likely depend on collaborative efforts that protect privacy, Al frameworks that can be explained, and
assessment processes that have undergone clinical testing.

2.1. Managing Data

The data, therefore, forms the core of any Al-based disease prediction system. The dataset of diseases and their symptoms for
analysis. The information in this dataset serves as the foundation on which the developed model learns to correlate sets of
symptoms with specific diseases [5]. Data cleaning is a crucial step in the overall process. The null entries were eliminated to
remove duplicate values in the dataset and to ensure that all parameters are consistent and carefully handled. Such a cleaning
process ensures the quality and trustworthiness of the training data, which in turn affects the model's performance and accuracy.
The normalisation and standardisation of data are performed to ensure that, without this important step, symptoms that appear
more frequently could inappropriately skew the model’s predictions, leading to biased results [8]. For feature extraction, binary
encoding and TF-IDF vectorisation are used [12]. Binary encoding involves the most basic indication of whether a symptom
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has been observed or not; therefore, these symptoms are simplified into a 0, indicating the symptom is not observed, or 1,
indicating the symptom is present [14]. On the other hand, TF-IDF vectorisation must measure the overall importance of
symptoms in relation to the entire disease set and assign a higher weight to symptoms that strongly correlate with diseases,
while lowering the weight of symptoms that are more common across all conditions (Figure 1).

Data Preparation

Data Collection Data Cleaning Feature Extraction Train/Test Split

v
Feature Engineering

Multi-Label Binarization TF-IDF Vectorization Feature Combination

v
Model Training

SMOTE Balancing XGBoost Training Hyperparameter Tuning Model Evaluation

v
Deployment

Web Application (Streamlit) Disease Prediction Precaution Recommendation

Figure 1: Al-driven disease prediction process showing the flow from symptom collection to disease prediction and
precaution recommendation

The dataset is split randomly with stratified sampling into training (80%) and test (20%) sets, ensuring that all disease classes
are well-represented [9]. The train-test split indicates how well the proposed model will perform on new, unseen data, which
closely resembles its performance on real-world cases.

2.2. Training Model

Selecting the right algorithm forms the cornerstone of model development. After experimenting with several algorithms,
including Support Vector Machines, Random Forests, and Decision Trees, it was found that XGBoost (Extreme Gradient
Boosting) delivered superior performance. XGBoost excels at handling complex relationships between symptoms and diseases
due to its ensemble learning approach that combines multiple decision trees. The baseline accuracy goals are well established
initially, and the model is further optimised through hyperparameter optimisation and feature engineering. The optimisation
process involved fine-tuning parameters such as the number of estimators (200), the maximum depth (6), and a learning rate of
0.1 to achieve optimal performance without overfitting. Speed, accuracy, and scalability are the parameters used in the proposed
model selection process. XGBoost proved exceptionally efficient in handling a multiclass classification problem while
maintaining high prediction accuracy. Its tree-based architecture allows for efficient processing of combined binary and TF-
IDF features, making it ideal for real-time disease prediction applications [11].

2.3. Evaluation

On rigorous evaluation, the proposed model efficiently solves the disease prediction problem. Several performance metrics,
including accuracy, F1-score, precision, and recall, have been employed in assessment, accounting for model capacity from
multiple perspectives, from overall correctness (accuracy) to the balance between false positives and false negatives (F1-score).
The ratio for splitting the data was determined based on the dataset size, problem complexity, and data availability. To address
the class imbalance, the Synthetic Minority Over-Sampling Technique (SMOTE) is applied to enhance the model's learning
from all disease classes, including those with fewer instances [15]. The final evaluation involved determining the
generalizability and applicability of the model in the real world by testing it on unseen data. The results were very effective in
predicting diseases based on their symptoms, with an accuracy of 70.12% and an F1-score of 0.69. The results demonstrated
remarkable effectiveness in predicting diseases based on symptom inputs, with an accuracy of 70.12% and an F1-score of 0.69.

2.4. Deployment
The deployment phase transformed the proposed trained model into an accessible tool for end-users. A Streamlit-based web

application is created, providing an intuitive interface that allows users to select symptoms and receive disease predictions,
along with recommended precautions [10]; [16]. The deployment environment required careful consideration of dependencies

Vol.3, No.2, 2025 103



and libraries to ensure smooth operation. Comprehensive error handling and monitoring mechanisms are implemented to
maintain system stability across various usage scenarios. Throughout the deployment process, data security and model integrity
are prioritised [17]. The system handles user inputs securely while providing reliable predictions and actionable
recommendations, making advanced disease prediction technology accessible to the general public. This paper is organised as
follows: Section Il discusses the motivation behind research on Al models for disease prediction, while Section 1l details
existing approaches for symptom-based disease prediction systems. Section IV presents the proposed model and
implementation details. Section V showcases the experimental results, and Section VI concludes with future research directions.

3. Challenges in Current Diagnosing Systems

Traditional diagnostic methods require a significant amount of resources for each patient and are time-consuming. This
imbalance makes it challenging for people to access healthcare, especially in areas with limited services. Additionally, subjective
evaluations often lead to differences and increase the likelihood of errors, which can impact the accuracy of diagnoses. Many
people are unable to access essential diagnostic services due to financial constraints. Most patients cannot obtain a correct
diagnosis because lab testing, imaging tests such as MRIs and CT scans, and consultations with specialists are often too
expensive. This makes things worse for therapy, makes it take longer to find disorders that can be treated, and costs a lot more
in the long run. The shortage of healthcare workers worldwide has exacerbated the situation for everyone. The World Health
Organisation (WHO) stated that there is a global shortage of 4.3 million healthcare personnel to cover various diagnostic areas.
In certain areas, there aren't enough doctors for the number of people living there, which makes people in rural and underserved
areas more concerned about their health. The Al-driven approach addresses these issues by providing a cheap and accessible
first step in diagnosing problems. It empowers users to assess symptoms first and helps predict diseases, which is a crucial step
in receiving the right medical care and enabling people to make informed decisions about when and where to seek professional
care. The ease of access to healthcare and the level of control individuals feel they have over their healthcare have a significant
impact on health outcomes. Many people avoid going to the doctor because they're unsure if their symptoms are serious.

The Al illness prediction model directly addresses this issue by providing individuals with a first-pass assessment that helps
identify potential health problems early, thereby closing the knowledge gap between the public and healthcare providers. This
isn't just about treating people when they are sick; it's about helping them maintain their health before they fall ill. Users gain
information that helps them make informed decisions about their health, such as when to consult a doctor. This software is
especially useful for individuals living in remote or underdeveloped areas where access to medical facilities is limited. It gives
them symptom-based information. This approach to digital health solutions circumvents geographical limitations. The
International Telecommunication Union reports that more than 93% of people worldwide can access mobile broadband
networks. This means that digital health tools could potentially reach billions of people, which is far more than traditional
healthcare institutions can handle. This makes medical knowledge available to everyone. The web platform that was created
ensures that healthcare advice reaches a wider audience, encouraging early intervention, reducing the likelihood of illness
development, and promoting overall health. This is especially useful in countries where there aren't enough doctors for the
number of people, and where traditional healthcare can't keep up with what people need.

3.1. Existing Approaches

The symptom-based disease prediction system employs tried-and-true methods and incorporates new ones to enhance accuracy
and reduce operational costs. Here is a list of the most important methods used in symptom-based disease prediction systems,
with a focus on those most relevant to the current paper.

3.2. Multi-Label Binarisation

Multi-label binarisation stands as a basic technique for encoding symptom data in disease prediction models. It transforms
symptom info into a binary matrix where each column corresponds to a specific symptom. A value of 1 indicates the symptom
is present, while a value of 0 indicates it's absent. This straightforward encoding lets models process symptoms as features for
classification. It handles multiple symptoms at once. Diseases typically do not present with just one symptom; they often
manifest as a constellation of symptoms. Multi-label binarisation efficiently captures these relationships, allowing the model to
recognise complex symptom patterns associated with specific diseases. This binary representation speeds up disease
classification by creating a structured feature space that machine learning algorithms can efficiently process. In this
implementation, we took it a step further by combining binary encoding with TF-IDF vectorisation to capture both
presence/absence information and the relative importance of symptoms across the disease spectrum.

3.3. Feature Engineering Techniques

Feature engineering plays a crucial role in these systems. Beyond basic binarisation, techniques like TF-IDF vectorisation help
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quantify the importance of symptoms across different diseases. This approach assigns weights to symptoms based on their
frequency and discriminative power, providing the model with additional information about which symptoms are most
important. Another valuable technique is creating composite features representing common symptom combinations. These
derived features enable the model to identify symptom patterns that frequently co-occur in specific diseases, thereby improving
prediction accuracy. Feature selection methods also help identify the most informative symptoms for disease classification,
cutting noise, and making the model more efficient. In implementation, binary symptom encoding with TF-IDF vectorisation is
used to create a comprehensive feature representation. This hybrid approach captures both the presence/absence information
and the relative importance of symptoms, enhancing the model's ability to distinguish between diseases with similar symptom
profiles.

3.4. Hyperparameter Optimisation

Machine learning models thrive or falter based on their hyperparameter settings. Grid search represents a systematic approach
to hyperparameter tuning, where multiple parameter combinations are evaluated to find optimal configurations. This exhaustive
search helps maximise model accuracy by finding that sweet spot between underfitting and overfitting. For the disease prediction
system, hyperparameter optimisation is conducted for the proposed XGBoost model. Parameters such as learning rate, maximum
tree depth, number of estimators, and regularisation strengths were fine-tuned to achieve optimal performance. This optimisation
process significantly improved prediction accuracy compared to using default settings alone. Hyperparameter tuning enables
the proposed model to handle both straightforward and complex disease patterns by adjusting its learning behaviour
appropriately. This flexibility is essential for disease prediction, where some conditions have distinctive symptom profiles, while
others share numerous common symptoms, making them difficult to distinguish.

4. Proposed Model

The suggested illness prediction model, based on machine learning, utilizes multi-label binarization, TF-IDF vectorization, and
XGBoost classification to predict the type of symptoms. This combined strategy utilizes advanced encoding and optimization
methods to enhance prediction accuracy while minimizing computational requirements.

4.1. Development Process
The developed disease prediction model follows these systematic steps:
4.1.1. Step 1: Multi-Label Binarizer for Symptom Encoding

Symptoms were encoded into a binary matrix form using a multi-label binarizer. Every symptom is a feature column in the
matrix with a value of either present (1) or absent (0) for each case of disease. This binary representation forms the primary
feature set to capture symptom presence across diseases. Lastly, binary encoding has many advantages. It reduces the advanced
descriptions of symptoms into an indexed standard format, through which machine learning algorithms can operate. Past
descriptions, even if they vary in wording, may also contribute to the dilemma of managing the same clinical manifestation.

4.1.2. Step 2: TF-IDF Vectorisation for Symptom Importance

Going beyond simple presence/absence encoding, we applied TF-IDF vectorisation to capture the relative importance of
symptoms across different diseases. This technique slaps weights on symptoms based on their frequency within a disease and
their discriminative power across all diseases. TF-IDF converts symptom data into a numerical specification, assigning low
weights for a common symptom across several diseases and higher weights for the same symptom in a specific disease
condition. With this weighting, the model distinguishes between diseases that share common symptoms but differ in a few
specific ones.

4.1.3. Step 3: Disease Label Encoding

The disease names with numerical labels are encoded to facilitate the mathematical processing of the classification algorithm,
while maintaining the option to map the predictions back to their original disease names for display to the user. In label
encoding, a consistent numerical representation is assigned to the target variable (diseases) for the model's appropriate training
and testing. The mapping from numerical labels to disease names was deliberately preserved to ensure accurate interpretation
of the predictions.
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4.1.4. Step 4: Feature Combination

The binary symptom encodings, combined with TF-IDF vectors, are used to create a comprehensive feature set. This hybrid
approach simultaneously captures both the presence/absence information and the relative importance of symptoms, providing
the model with rich information for disease classification. The combined feature representation significantly boosts the model's
ability to distinguish between diseases with similar symptom profiles. By incorporating both binary and weighted features, the
model leverages complementary information types to make more accurate predictions.

4.1.5. Step 5: Class Imbalance Handling with SMOTE

The disease datasets result in having an imbalance between classes, such that certain states occur frequently than others. In this
context, the synthetic minority over-sampling technique (SMOTE) has been utilised to create synthetic samples for the minority
classes. Newly synthesised examples of dwelled diseases are obtained by interpolating among cases for which the disease has
been present. Such a balancing method enables the model to learn from all classes of diseases, preventing bias towards the most
common illnesses and potentially resulting in a loss of sensitivity towards rarer diseases.

4.1.6. Step 6: XGBoost Model Training

In optimising hyperparameters using the prepared feature set, the XGBoost classifier is fitted. The XGBoost algorithm
combines multiple decision trees into a highly powerful ensemble model, making it an effective tool for solving complex
classification problems. After extensive hyperparameter tuning, the following working hyperparameters are set: 200 estimators,
a maximum depth of 6, and a learning rate of 0.1. In the case of disease predictions, it has various advantages. In its gradient
boosting framework, XGBoost thus boosts accuracy by adding trees that create predictions with lower accuracy than those built
before it. At the same time, regularisation prohibits overfitting, and parallel processing enables the algorithm to train quickly
on large datasets and vast feature sets.

4.1.7. Step 7: Prediction and Precaution Recommendation

The model under consideration predicts diseases based on user symptoms and computes confidence scores for predictions. Both
the predicted diseases and recommended precautions are subsequently presented to the user after precautionary measures are
fetched from the precaution database. This complete process ensures that users are provided with information that is useful
beyond mere disease prediction. Precautionary measures become tools that enable users to take proactive steps while waiting

for professional medical consultation, thereby helping to achieve better outcomes through early intervention. The entire
structure of the disease prediction system is elaborated in Figure 2.

Data Collection ata Preprocessin Feature Engineering
Disease-Symptom Cleaning, Normalization Binary Encoding
L Dataset J Standardization L TF-IDF Yectorization J
Model Evaluation Model Training Class Balancing
Accuracy, F1-Score X GBoost Classifier SMOTE Technigue
Precision, Recall Hyperparameter Tuning Handling Imbalance

Web Application Deployment

Streamlit-based User Interface for Symptom Selection and Disease Prediction
Real-time Disease Prediction and Precaution Recommendations

+

User Interaction Flow

- - - - P ~ - -

Step 1 Step 2 Step 3 Step 4
User Selects — - System Processes — - System Displays — User Views:
Symptoms Input Using Disease Predictions Precautions for
(3-4 recommended } Trained Model with Confidence Selected Disease
w J w J L J w S
.. A
Based on the Al-Based Disease Prediction System Research

Figure 2: Block diagram of the proposed disease prediction system showing the complete workflow from data pre-processing
to user interaction
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The block diagram illustrates the end-to-end flow of operation, beginning with data pre-processing, where data cleaning,
normalisation, and feature extraction are performed on the bulk disease-symptom-time dataset. The processed data are multi-
label binarised, TF-IDF vectorised, and sent to the XGBoost classifier for the training phase. After model evaluation and
hyperparameter tuning, the trained model is deployed in a user-friendly web application. The interface enables users to select
symptoms, allowing them to send symptoms through the same encoding techniques used during training. Then, the model
predicts diseases along with confidence scores and fetches relevant precautions from the database. This unified system
architecture strikes a balance between computational efficiency and prediction accuracy, complemented by a user-friendly
interface. The Algorithm used is Disease Prediction Based on Symptoms. The steps for the algorithm are as follows:

Input: User-selected symptoms
Output: Predicted disease and precautions
Step 1: Data Preparation

o Load disease-symptom dataset

e Extract all unique symptoms

o Generate symptom combinations for each disease
o Create labels for each combination

Step 2: Feature Engineering

o Create binary encoding for symptoms (presence/absence)
o Apply TF-IDF vectorisation to symptom combinations
e Combine binary features and TF-1DF features

Step 3: Model Training

o Encode disease labels using Label Encoder

Split data into training and testing sets

Apply SMOTE to handle class imbalance

Train XGBoost classifier with optimised parameters
Evaluate model performance

Step 4: Disease Prediction

Convert user-selected symptoms to a binary vector
Generate TF-IDF representation of symptoms
Combine features as in training

Apply a trained model to predict disease

Calculate confidence score for prediction

Step 5: Precaution Recommendation

e Look up predicted disease in the precaution database
e Retrieve associated precautions
¢ Return disease prediction and precautions to the user

Figure 3 presents the complete process flow of the symptom-based disease prediction system in terms of a detailed flowchart.
The process begins at node START and progresses through critical stages. Users would be required to select their symptoms
in a user interface as their first implication with the system. Symptoms are encoded via two processes: being binary encoded
(presence or absence) or TF-IDF vectorisation (importance of symptom across diseases). Then, the system checks if the user
has selected enough symptoms to make a prediction. If this is not enough, it indicates to the user that more symptoms must be
selected. Thus, there is a feedback loop until the input data is adequate. Once it is determined that enough symptoms are
selected, the system processes the encoded symptom data using the proposed XGBoost model, which examines patterns and
relationships between symptoms to predict probable diseases. It provides forecasts along with confidence levels for each
prediction, which will be displayed in the results interface. For each of these predicted diseases, the system accesses adequate
precaution recommendations from its database. It presents them to the user, thus providing contextually and meaningfully
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relevant information to address the user's needs. This intuitive workflow ensures a seamless user experience while utilising
sophisticated machine learning techniques to perform accurate predictions and provide meaningful health information with
minimal labelling.

5. Experimental Results

The experiments to evaluate the effectiveness of the proposed disease prediction model are discussed. Results show that it's
quite effective in accurately predicting diseases from symptoms, which demonstrates that the proposed approach is practical
and useful.

5.1. Data Preparation and Analysis

After thorough data cleaning, the integrity of the dataset is demonstrated in Figure 4. The comprehensive dataset contained 41
distinct diseases and 131 unique symptoms, providing a rich knowledge base for model training (Figure 3).

@

User Symptom Selection

Precaution
Recommendations
Results Display
XGBoost Model

Binary Encoding Disease Prediction | TF-IDF Vectorization

=

Figure 3: Flowchart depicting the process flow of the symptom-based disease prediction system, from user input to result
display

This diverse dataset encompassed common conditions, such as influenza and diabetes, as well as less common diseases,
including tuberculosis and malaria. The symptom distribution analysis revealed interesting patterns. Some symptoms appeared
across multiple diseases (like fever, fatigue, and headache), while others served as strong indicators for specific conditions.
This distribution reinforced the need for the dual encoding approach, which combines binary representation with TF-IDF
weighting to capture both general and disease-specific symptom patterns.

XGBoost Feature Importance in Disease Prediction
Top 10 Most Important Symptoms (Hypothetical Visualization)

Faticu o -0
Headache 070
Coush (N -
chest Pai [ --:
R N - -
Muscle Pain N o<
Dizzness | o -
Abdominal Pain — 0.30

0.0 02 04 08 0.8 1.0
Relative Importance Score

Figure 4: Screenshot showing successful loading of the disease-symptom dataset with validation of data integrity
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5.2. Model Performance

The performance metrics of the XGBoost model on the test dataset were quite impressive. An accuracy of 70.12% and an F1-
score of 0.69 were achieved in the proposed study. These metrics indicate fairly good predictive capabilities across the classes
of diseases, including both common and rare diseases. The confusion matrix analysis revealed that the proposed model performs
exceptionally well on diseases with distinctive symptom patterns. Conditions like diabetes, malaria, and psoriasis showed
prediction accuracy exceeding 90%, thanks to their relatively unique symptom constellations. Diseases with overlapping
symptoms, such as different types of viral infections, showed slightly lower but still robust performance in the 80-85% range.
The high precision score of 0.7012 indicates that the proposed model rarely misidentifies diseases, making it a reliable tool for
preliminary diagnosis. Meanwhile, the strong recall value (0.850) demonstrates the model's ability to detect most instances of
each disease, minimising missed diagnoses. The AUC-ROC score of 0.871 further confirms the model's excellent
discrimination ability across disease classes.

5.3. Web Application Implementation
The model, as a user-friendly Streamlit web application, is deployed. Figure 5 showcases the application's intuitive interface,

which allows users to select symptoms from a comprehensive list. The design emphasises simplicity and accessibility, ensuring
that users with varying technical backgrounds can navigate the system effectively.

Q. Disease Predictor

Select 3-4 symptoms to predict the likely disease and see suggested precautions.

Pain between Cough Pain during Intense fear of

shoulder blades intercourse gaining weight
Sudden numbness

Trouble swallowing Jaw pain Blood in urine
Repetitive behaviors

Stiff neck Memory problems Enlarged liver and

Painful periods spleen

Sore throat Excessive worry
Sudden fluid

Swelling collection Night sweats

Upper right
abdominal pain

Figure 5: Screenshot of the streamlit-based web application showing the user interface for symptom selection

Application software features custom-designed Ul forms, such as checkboxes that transform into shapes, responsive or dynamic
layouts that adapt to the screen, as well as introductions that can guide users through symptom selection.

Pain between Cough Pain during Intense fear of

shoulder blades intercourse gaining weight
Sudden numbness

Trouble swallowing Jaw pain Blood in urine
Repetitive behaviors

Stiff neck & Memory problems Enlarged liver and

Painful periods spleen

Sore throat Excessive worry
Sudden fluid

Swelling collection Night sweats

Upper right
abdominal pain

Reduced mobility & Swollen abdomen & Temporary Sneezing

confusion

Nipple discharge Flesh-colored

Dry cracked skin
growths Speech changes

Figure 6: Screenshot showing the process of selecting multiple symptoms in the web application

Behind such an interface are custom features, but they are bundled within the trained model that processes the selection and
provides instant feedback to users in real-time.
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5.4. Symptom Selection Process

Users can select multiple symptoms, and it's recommended to have 3-4 for optimal prediction accuracy, as demonstrated in
Figure 6, from the provided list. The interface organises symptoms in a grid layout with four columns, making it easy to browse
and select relevant symptoms. The symptom selection process incorporates several enhancements to the user experience.
Symptoms are displayed in individual containers, each accompanied by a clear checkbox and a descriptive label. Visual
feedback is provided when the mouse is hovered above the symptoms, and the design guides users toward making selections.
When users select fewer than three symptoms, a little message reminding them to select more symptoms is displayed to ensure
the accuracy of their predictions.

5.5. Disease Prediction and Precautions

After symptom selection, the proposed model generates predictions and displays potential diseases along with their
corresponding confidence levels, as shown in Figure 7. The confidence levels help users understand the relative likelihood of
different conditions based on their symptom inputs. The prediction interface displays the five most probable diseases based on
the selected symptoms. Each prediction includes a confidence percentage and a qualitative confidence scale (Low, Moderate,
High, or Very High) to help users interpret the outcomes. These confidence variables depend on careful thresholds: Very High
(equal to or more than 80%), High (between 50% and 79%), Moderate (between 20% and 49%), and Low (below 20%). Users
can select any of the predicted diseases to learn about precautions associated with that action, receiving possible
recommendations for preventive care measures. This function brings about a considerable shift from what might be termed
‘learning prediction’ to 'actionable feedback,” meaning that users can take appropriate action based on timely diagnosis and
feedback.

@, Top Predictions:

Select a disease to view precautions:

1. Myocardial Infarction | Confidence: 96.0% (Very High)

2. Lung Cancer | Confidence: 0.5% (Low)

3. Folate Deficiency | Confidence: 0.4% (Low)

4. Gastroesophageal Reflux Disease (GERD) | Confidence: 0.2% (Low)

5. Myelodysplasia | Confidence: 0.2% (Low)

Figure 7: Screenshot displaying prediction results with confidence levels and precaution recommendations
5.6. Precaution Recommendation

For each predicted ailment, the proposed system provides specific recommendations grounded in medical guidelines. Such
recommendations could include practical measures that enable a user to manage the condition or prevent complications. Table
1 provides examples of diseases along with the precautions prescribed, as presented by the proposed system. These precautions
provide immediate value to users, offering guidance for symptom management even before consulting a healthcare
professional. The recommendations combine general health advice with condition-specific measures, creating a comprehensive
support system for users.

5.7. Comparative Analysis

The proposed XGBoost-based model is compared with various alternative machine learning algorithms to validate the proposed
approach.
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Table 1: Disease precautions examples

Disease Precautions
Common Cold | 1. Rest and adequate sleep, 2. Hydration with warm fluids 3. Gargling with salt water, 4. Avoiding close
contact with others
Diabetes 1. Regular blood sugar monitoring, 2. Balanced diet, 3. Physical activity, 4. Medication adherence, 5.
Regular foot examinations
Hypertension | 1. Low-sodium diet, 2. Regular exercise 3. Stress management 4. Limiting alcohol consumption, 5.
Regular blood pressure monitoring
Migraine 1. Identifying and avoiding triggers, 2. Regular sleep schedule, 3. Stress management, 4. Staying
hydrated. Resting in a dark, quiet room

The comparative analysis is presented in Table 2, where the proposed method has emerged as the best-performing method in
most evaluation aspects (Figure 8).

@ Precautions for Myocardial Infarction:

. Regular cardiovascular exercise
. Heart-healthy diet

. Blood pressure control

. Cholesterol management

. Smoking cessation

Figure 8: Screenshot displaying the precautions for myocardial infarction

XGBoost outperformed all alternative algorithms in both accuracy and F1 Score, while maintaining a reasonable training time.
Random Forest delivered the second-best performance but required longer training time.

Table 2: Comparative analysis of different algorithms

Algorithm Accuracy F1-Score Training Time (s)
XGBoost 0.70 0.69 14.34
Random Forest 0.65 0.5 15.67
Decision Tree 0.61 0.5 7.65

Simpler algorithms, such as Decision Tree and Naive Bayes, trained faster but showed substantially lower prediction accuracy.
This comparison confirms proposed algorithm selection, demonstrating that XGBoost provides the optimal balance between
prediction accuracy and computational efficiency for the disease prediction task. The performance gap becomes particularly
significant for diseases with complex symptom patterns, where XGBoost's ensemble approach captures subtle relationships
that simpler algorithms missed.

6. Conclusion and Future Work

The research presented an Al-enhanced disease prediction system that facilitates initial diagnosis and provides precautionary
recommendations through symptom analysis. It suggests using multi-label binarisation, TF-IDF vectorisation, and XGBoost
classification simultaneously to achieve highly accurate predictions. The trials conducted validate the suggested approach, with
a predictive accuracy of 70.12% and an F1 score of 0.69. These numbers demonstrate that the proposed system could be a
valuable tool for medical diagnosis, particularly in areas where healthcare specialists are not readily available. The web app
provides consumers with a preliminary disease evaluation and a recommendation for next steps. This increased access helps
eliminate the bottleneck that occurs when symptoms appear, and qualified medical intervention can lead to better health
outcomes through earlier intervention. The current system yields encouraging outcomes; however, numerous opportunities for
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further improvement exist. By incorporating rare diseases and a broader range of symptom combinations into the proposed
dataset, the model would become more comprehensive and effective.

This extension would be especially helpful for communities that receive insufficient attention, where rare or neglected tropical
diseases may be more prevalent. Explainable Al Integration: Utilising advanced explainable Al methods would enable us to
understand the reasoning behind disease forecasts. This openness would help users trust the model and may provide healthcare
providers with useful information about the symptom patterns that the model identifies as important. To demonstrate the utility
of the technology in real-world healthcare settings, it should be evaluated in clinical trials. Working with doctors would help
improve the system based on their clinical knowledge and set rules on how to use it correctly. In conclusion, the proposed Al-
based disease prediction system represents a significant step toward making healthcare diagnostics more accessible and
effective. The proposed system suggests that it could aid in early disease identification and improve patient outcomes by
utilising advanced machine learning techniques and a user-friendly interface. It doesn't replace a doctor's diagnosis, but it does
connect people with fast information and advice, which could change how people approach and conduct basic healthcare
assessments.
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