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Abstract: Most diseases start with a few main symptoms that are unique to them. Recognising these initial symptoms can 

preserve countless lives and improve the provision of healthcare. A new way to anticipate common diseases is discussed in 

this work. It is based on an interactive, user-friendly model that anyone may use. The rapid advancement of AI has opened up 

several avenues to enhance diagnostic processes in healthcare. This effort aims to improve the effectiveness of these initial 

medical tests, particularly in underserved areas. The analysis indicates that cardiovascular illnesses are still one of the top 

causes of death in the world, with 18.6 million fatalities in 2019, or roughly 36% of all deaths worldwide. Finding and treating 

symptoms like chest pain, shortness of breath, or fatigue early on greatly lowers the risk of bad outcomes linked to heart disease. 

An illness like tuberculosis, even though it isn't very common, can be diagnosed and treated early, which can raise the cure 

rate to 85–95%. The study demonstrates that the suggested model can predict diseases based on symptom input with 70.12% 

accuracy, establishing it as a valuable tool in medical diagnostics. 
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1. Introduction 

 

The key point in Artificial Intelligence (AI) is the capability of a machine to imitate intelligent human behaviour. The AI 

systems utilise human neural network analysis and knowledge graph mapping for information processing, much like a human 

would. Since thousands of parameters are processed simultaneously, the existing models require a substantial amount of 

computational power to be trained. Recent research has seen rapid developments in AI capabilities, supporting sustainable and 

effective methods in various areas. As such, AI intervention is initiated in different healthcare solutions, complemented by its 

pattern recognition strengths. The process of training an AI model involves several steps, including data collection, pre-

processing, model selection, and extensive training to identify patterns and relationships. In the healthcare space, we have 
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tremendous potential for AI applications in disease diagnosis and prediction. Conventional diagnostic procedures comprise 

subjective evaluations performed by healthcare providers, and may be a lengthy process, and (in some cases) also prone to 

human error. AI-based models provide an objective and efficient means of analysing symptoms to predict disease, and act as 

valuable tools to assist healthcare providers in making faster, more accurate diagnoses. This is a game-changing introduction 

to disease prediction through the AI-driven platform for preliminary medical assessments. The first aspect of the process is 

illustrated in Figure 1, where symptoms are captured through an interactive interface by users. The symptoms are interpreted 

by a proposed trained AI model, which analyses the symptom patterns against its knowledge base. The model identifies 

probable diseases based on the symptom constellation and calculates confidence levels for each prediction. This pathway not 

only enables the receipt of preliminary assessments but also provides clear steps on what to do if the predicted conditions arise, 

thus likely to be effective in minimising delays. 

 

2. Literature Review 

 

The study of Artificial Intelligence for Clinical Prediction finds eight critical areas where AI enhances clinical prediction, 

including diagnosis, prognosis, and tailored therapy, particularly in oncology and radiology. Automated disease detection and 

prediction enabled by AI are crucial in enabling medical personnel to provide patients with appropriate care. While such 

predictive tools have been extensively studied in resource-rich languages such as English, this paper focuses on automatically 

predicting disease categories from symptoms described in the Afaan Oromo language using several classification algorithms. 

AI is now an important part of modern disease detection. There is a lot of new research on medical imaging, multimodal data, 

and privacy-preserving techniques. Litjens et al. [1] early survey work methodically analysed deep learning in medical image 

processing, laying the groundwork for future research possibilities. Since that time, significant research has demonstrated that 

deep neural networks can perform as well as or better than human experts on a wide range of detection tasks. Rajpurkar et al. 

[2] introduced CheXNet, a 121-layer convolutional neural network trained on the ChestX-ray14 dataset, which attained 

radiologist-level accuracy in pneumonia detection. Esteva et al. [3] also utilised transfer learning to classify skin lesions, 

reporting that their approach performed as well as a dermatologist in identifying melanoma.  

 

In the field of ophthalmology, Gulshan et al. [4] confirmed the efficacy of a deep learning system for identifying referable 

diabetic retinopathy through retinal fundus images, demonstrating elevated sensitivity and specificity across several clinical 

locations. This research underscores the adaptability and therapeutic applicability of imaging-based AI systems. Convolutional 

neural networks (CNNs), 3D CNNs, and U-Net variations continue to be the most popular methods for segmentation and 

classification tasks. Recent improvements have explored Vision Transformers and ensemble approaches to enhance their 

resilience. Transfer learning is commonly utilised to address the scarcity of labelled data, while preprocessing methods and 

region-of-interest extraction improve interpretability [13]. Even though models work well within a dataset, they often fail to 

perform well when applied to datasets from outside the dataset or various imaging devices. Federated learning (FL) has emerged 

as a promising approach to addressing data silos and privacy concerns. The reviews by Rehman et al. [6] demonstrate how FL 

enables institutions to collaborate on training without disclosing raw patient data.  

 

This makes the models more diverse and robust while maintaining patient information privacy. Nonetheless, variability in local 

datasets and communication efficiency continue to pose substantial obstacles to widespread implementation. Another important 

area of research is prejudice and explainability. For clinical use, AI needs to be reliable; however, many people refer to models 

as “black boxes.” To facilitate understanding, methods such as saliency maps, attention mechanisms, and uncertainty 

quantification have been combined; however, their reliability remains a topic of debate [7]. Moreover, numerous studies warn 

that algorithmic bias stemming from demographic disparities in training data can compromise fairness and therapeutic safety. 

Overall, related studies show that AI-based disease detection has made great strides in several areas of technology. 

Nevertheless, significant research deficiencies persist in achieving cross-site generalisation, tackling low-prevalence diseases 

with scarce data, synthesising multimodal information, and conducting deployment studies that evaluate patient outcomes. 

Future advancements will likely depend on collaborative efforts that protect privacy, AI frameworks that can be explained, and 

assessment processes that have undergone clinical testing. 

 

2.1. Managing Data  

 

The data, therefore, forms the core of any AI-based disease prediction system. The dataset of diseases and their symptoms for 

analysis. The information in this dataset serves as the foundation on which the developed model learns to correlate sets of 

symptoms with specific diseases [5]. Data cleaning is a crucial step in the overall process. The null entries were eliminated to 

remove duplicate values in the dataset and to ensure that all parameters are consistent and carefully handled. Such a cleaning 

process ensures the quality and trustworthiness of the training data, which in turn affects the model's performance and accuracy. 

The normalisation and standardisation of data are performed to ensure that, without this important step, symptoms that appear 

more frequently could inappropriately skew the model’s predictions, leading to biased results [8]. For feature extraction, binary 

encoding and TF-IDF vectorisation are used [12]. Binary encoding involves the most basic indication of whether a symptom 
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has been observed or not; therefore, these symptoms are simplified into a 0, indicating the symptom is not observed, or 1, 

indicating the symptom is present [14]. On the other hand, TF-IDF vectorisation must measure the overall importance of 

symptoms in relation to the entire disease set and assign a higher weight to symptoms that strongly correlate with diseases, 

while lowering the weight of symptoms that are more common across all conditions (Figure 1).  

 

 
 

Figure 1: AI-driven disease prediction process showing the flow from symptom collection to disease prediction and 

precaution recommendation 

 

The dataset is split randomly with stratified sampling into training (80%) and test (20%) sets, ensuring that all disease classes 

are well-represented [9]. The train-test split indicates how well the proposed model will perform on new, unseen data, which 

closely resembles its performance on real-world cases.  

 

2.2. Training Model  

 

Selecting the right algorithm forms the cornerstone of model development. After experimenting with several algorithms, 

including Support Vector Machines, Random Forests, and Decision Trees, it was found that XGBoost (Extreme Gradient 

Boosting) delivered superior performance. XGBoost excels at handling complex relationships between symptoms and diseases 

due to its ensemble learning approach that combines multiple decision trees. The baseline accuracy goals are well established 

initially, and the model is further optimised through hyperparameter optimisation and feature engineering. The optimisation 

process involved fine-tuning parameters such as the number of estimators (200), the maximum depth (6), and a learning rate of 

0.1 to achieve optimal performance without overfitting. Speed, accuracy, and scalability are the parameters used in the proposed 

model selection process. XGBoost proved exceptionally efficient in handling a multiclass classification problem while 

maintaining high prediction accuracy. Its tree-based architecture allows for efficient processing of combined binary and TF-

IDF features, making it ideal for real-time disease prediction applications [11]. 

 

2.3. Evaluation  

 

On rigorous evaluation, the proposed model efficiently solves the disease prediction problem. Several performance metrics, 

including accuracy, F1-score, precision, and recall, have been employed in assessment, accounting for model capacity from 

multiple perspectives, from overall correctness (accuracy) to the balance between false positives and false negatives (F1-score). 

The ratio for splitting the data was determined based on the dataset size, problem complexity, and data availability. To address 

the class imbalance, the Synthetic Minority Over-Sampling Technique (SMOTE) is applied to enhance the model's learning 

from all disease classes, including those with fewer instances [15]. The final evaluation involved determining the 

generalizability and applicability of the model in the real world by testing it on unseen data. The results were very effective in 

predicting diseases based on their symptoms, with an accuracy of 70.12% and an F1-score of 0.69. The results demonstrated 

remarkable effectiveness in predicting diseases based on symptom inputs, with an accuracy of 70.12% and an F1-score of 0.69. 

 

2.4. Deployment 

 

The deployment phase transformed the proposed trained model into an accessible tool for end-users. A Streamlit-based web 

application is created, providing an intuitive interface that allows users to select symptoms and receive disease predictions, 

along with recommended precautions [10]; [16]. The deployment environment required careful consideration of dependencies 
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and libraries to ensure smooth operation. Comprehensive error handling and monitoring mechanisms are implemented to 

maintain system stability across various usage scenarios. Throughout the deployment process, data security and model integrity 

are prioritised [17]. The system handles user inputs securely while providing reliable predictions and actionable 

recommendations, making advanced disease prediction technology accessible to the general public. This paper is organised as 

follows: Section II discusses the motivation behind research on AI models for disease prediction, while Section III details 

existing approaches for symptom-based disease prediction systems. Section IV presents the proposed model and 

implementation details. Section V showcases the experimental results, and Section VI concludes with future research directions. 

 

3. Challenges in Current Diagnosing Systems 

 

Traditional diagnostic methods require a significant amount of resources for each patient and are time-consuming. This 

imbalance makes it challenging for people to access healthcare, especially in areas with limited services. Additionally, subjective 

evaluations often lead to differences and increase the likelihood of errors, which can impact the accuracy of diagnoses. Many 

people are unable to access essential diagnostic services due to financial constraints. Most patients cannot obtain a correct 

diagnosis because lab testing, imaging tests such as MRIs and CT scans, and consultations with specialists are often too 

expensive. This makes things worse for therapy, makes it take longer to find disorders that can be treated, and costs a lot more 

in the long run. The shortage of healthcare workers worldwide has exacerbated the situation for everyone. The World Health 

Organisation (WHO) stated that there is a global shortage of 4.3 million healthcare personnel to cover various diagnostic areas. 

In certain areas, there aren't enough doctors for the number of people living there, which makes people in rural and underserved 

areas more concerned about their health. The AI-driven approach addresses these issues by providing a cheap and accessible 

first step in diagnosing problems. It empowers users to assess symptoms first and helps predict diseases, which is a crucial step 

in receiving the right medical care and enabling people to make informed decisions about when and where to seek professional 

care. The ease of access to healthcare and the level of control individuals feel they have over their healthcare have a significant 

impact on health outcomes. Many people avoid going to the doctor because they're unsure if their symptoms are serious.  

 

The AI illness prediction model directly addresses this issue by providing individuals with a first-pass assessment that helps 

identify potential health problems early, thereby closing the knowledge gap between the public and healthcare providers. This 

isn't just about treating people when they are sick; it's about helping them maintain their health before they fall ill. Users gain 

information that helps them make informed decisions about their health, such as when to consult a doctor. This software is 

especially useful for individuals living in remote or underdeveloped areas where access to medical facilities is limited. It gives 

them symptom-based information. This approach to digital health solutions circumvents geographical limitations. The 

International Telecommunication Union reports that more than 93% of people worldwide can access mobile broadband 

networks. This means that digital health tools could potentially reach billions of people, which is far more than traditional 

healthcare institutions can handle. This makes medical knowledge available to everyone. The web platform that was created 

ensures that healthcare advice reaches a wider audience, encouraging early intervention, reducing the likelihood of illness 

development, and promoting overall health. This is especially useful in countries where there aren't enough doctors for the 

number of people, and where traditional healthcare can't keep up with what people need. 

 

3.1. Existing Approaches  

 

The symptom-based disease prediction system employs tried-and-true methods and incorporates new ones to enhance accuracy 

and reduce operational costs. Here is a list of the most important methods used in symptom-based disease prediction systems, 

with a focus on those most relevant to the current paper. 

 

3.2. Multi-Label Binarisation 

 

Multi-label binarisation stands as a basic technique for encoding symptom data in disease prediction models. It transforms 

symptom info into a binary matrix where each column corresponds to a specific symptom. A value of 1 indicates the symptom 

is present, while a value of 0 indicates it's absent. This straightforward encoding lets models process symptoms as features for 

classification. It handles multiple symptoms at once. Diseases typically do not present with just one symptom; they often 

manifest as a constellation of symptoms. Multi-label binarisation efficiently captures these relationships, allowing the model to 

recognise complex symptom patterns associated with specific diseases. This binary representation speeds up disease 

classification by creating a structured feature space that machine learning algorithms can efficiently process. In this 

implementation, we took it a step further by combining binary encoding with TF-IDF vectorisation to capture both 

presence/absence information and the relative importance of symptoms across the disease spectrum. 

 

3.3. Feature Engineering Techniques 

 

Feature engineering plays a crucial role in these systems. Beyond basic binarisation, techniques like TF-IDF vectorisation help 

104



 

Vol.3, No.2, 2025  

quantify the importance of symptoms across different diseases. This approach assigns weights to symptoms based on their 

frequency and discriminative power, providing the model with additional information about which symptoms are most 

important. Another valuable technique is creating composite features representing common symptom combinations. These 

derived features enable the model to identify symptom patterns that frequently co-occur in specific diseases, thereby improving 

prediction accuracy. Feature selection methods also help identify the most informative symptoms for disease classification, 

cutting noise, and making the model more efficient. In implementation, binary symptom encoding with TF-IDF vectorisation is 

used to create a comprehensive feature representation. This hybrid approach captures both the presence/absence information 

and the relative importance of symptoms, enhancing the model's ability to distinguish between diseases with similar symptom 

profiles. 

 

3.4. Hyperparameter Optimisation 

 

Machine learning models thrive or falter based on their hyperparameter settings. Grid search represents a systematic approach 

to hyperparameter tuning, where multiple parameter combinations are evaluated to find optimal configurations. This exhaustive 

search helps maximise model accuracy by finding that sweet spot between underfitting and overfitting. For the disease prediction 

system, hyperparameter optimisation is conducted for the proposed XGBoost model. Parameters such as learning rate, maximum 

tree depth, number of estimators, and regularisation strengths were fine-tuned to achieve optimal performance. This optimisation 

process significantly improved prediction accuracy compared to using default settings alone. Hyperparameter tuning enables 

the proposed model to handle both straightforward and complex disease patterns by adjusting its learning behaviour 

appropriately. This flexibility is essential for disease prediction, where some conditions have distinctive symptom profiles, while 

others share numerous common symptoms, making them difficult to distinguish. 

 

4. Proposed Model 

 

The suggested illness prediction model, based on machine learning, utilizes multi-label binarization, TF-IDF vectorization, and 

XGBoost classification to predict the type of symptoms. This combined strategy utilizes advanced encoding and optimization 

methods to enhance prediction accuracy while minimizing computational requirements. 

 

4.1. Development Process 

 

The developed disease prediction model follows these systematic steps: 

 

4.1.1. Step 1: Multi-Label Binarizer for Symptom Encoding 

 

Symptoms were encoded into a binary matrix form using a multi-label binarizer. Every symptom is a feature column in the 

matrix with a value of either present (1) or absent (0) for each case of disease. This binary representation forms the primary 

feature set to capture symptom presence across diseases. Lastly, binary encoding has many advantages. It reduces the advanced 

descriptions of symptoms into an indexed standard format, through which machine learning algorithms can operate. Past 

descriptions, even if they vary in wording, may also contribute to the dilemma of managing the same clinical manifestation. 

 

4.1.2. Step 2: TF-IDF Vectorisation for Symptom Importance 

 

Going beyond simple presence/absence encoding, we applied TF-IDF vectorisation to capture the relative importance of 

symptoms across different diseases. This technique slaps weights on symptoms based on their frequency within a disease and 

their discriminative power across all diseases.TF-IDF converts symptom data into a numerical specification, assigning low 

weights for a common symptom across several diseases and higher weights for the same symptom in a specific disease 

condition. With this weighting, the model distinguishes between diseases that share common symptoms but differ in a few 

specific ones. 

 

4.1.3. Step 3: Disease Label Encoding 

 

The disease names with numerical labels are encoded to facilitate the mathematical processing of the classification algorithm, 

while maintaining the option to map the predictions back to their original disease names for display to the user. In label 

encoding, a consistent numerical representation is assigned to the target variable (diseases) for the model's appropriate training 

and testing. The mapping from numerical labels to disease names was deliberately preserved to ensure accurate interpretation 

of the predictions. 
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4.1.4. Step 4: Feature Combination 

 

The binary symptom encodings, combined with TF-IDF vectors, are used to create a comprehensive feature set. This hybrid 

approach simultaneously captures both the presence/absence information and the relative importance of symptoms, providing 

the model with rich information for disease classification. The combined feature representation significantly boosts the model's 

ability to distinguish between diseases with similar symptom profiles. By incorporating both binary and weighted features, the 

model leverages complementary information types to make more accurate predictions. 

 

4.1.5. Step 5: Class Imbalance Handling with SMOTE 

 

The disease datasets result in having an imbalance between classes, such that certain states occur frequently than others. In this 

context, the synthetic minority over-sampling technique (SMOTE) has been utilised to create synthetic samples for the minority 

classes. Newly synthesised examples of dwelled diseases are obtained by interpolating among cases for which the disease has 

been present. Such a balancing method enables the model to learn from all classes of diseases, preventing bias towards the most 

common illnesses and potentially resulting in a loss of sensitivity towards rarer diseases. 

 

4.1.6. Step 6: XGBoost Model Training 

 

In optimising hyperparameters using the prepared feature set, the XGBoost classifier is fitted. The XGBoost algorithm 

combines multiple decision trees into a highly powerful ensemble model, making it an effective tool for solving complex 

classification problems. After extensive hyperparameter tuning, the following working hyperparameters are set: 200 estimators, 

a maximum depth of 6, and a learning rate of 0.1. In the case of disease predictions, it has various advantages. In its gradient 

boosting framework, XGBoost thus boosts accuracy by adding trees that create predictions with lower accuracy than those built 

before it. At the same time, regularisation prohibits overfitting, and parallel processing enables the algorithm to train quickly 

on large datasets and vast feature sets. 

 

4.1.7. Step 7: Prediction and Precaution Recommendation 

 

The model under consideration predicts diseases based on user symptoms and computes confidence scores for predictions. Both 

the predicted diseases and recommended precautions are subsequently presented to the user after precautionary measures are 

fetched from the precaution database. This complete process ensures that users are provided with information that is useful 

beyond mere disease prediction. Precautionary measures become tools that enable users to take proactive steps while waiting 

for professional medical consultation, thereby helping to achieve better outcomes through early intervention. The entire 

structure of the disease prediction system is elaborated in Figure 2. 

 

 
 

Figure 2: Block diagram of the proposed disease prediction system showing the complete workflow from data pre-processing 

to user interaction 
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The block diagram illustrates the end-to-end flow of operation, beginning with data pre-processing, where data cleaning, 

normalisation, and feature extraction are performed on the bulk disease-symptom-time dataset. The processed data are multi-

label binarised, TF-IDF vectorised, and sent to the XGBoost classifier for the training phase. After model evaluation and 

hyperparameter tuning, the trained model is deployed in a user-friendly web application. The interface enables users to select 

symptoms, allowing them to send symptoms through the same encoding techniques used during training. Then, the model 

predicts diseases along with confidence scores and fetches relevant precautions from the database. This unified system 

architecture strikes a balance between computational efficiency and prediction accuracy, complemented by a user-friendly 

interface. The Algorithm used is Disease Prediction Based on Symptoms. The steps for the algorithm are as follows: 

 

Input: User-selected symptoms 

 

Output: Predicted disease and precautions 

 

Step 1:  Data Preparation 

 

 Load disease-symptom dataset 

 Extract all unique symptoms 

 Generate symptom combinations for each disease 

 Create labels for each combination 

 

Step 2: Feature Engineering 

 

 Create binary encoding for symptoms (presence/absence) 

 Apply TF-IDF vectorisation to symptom combinations 

 Combine binary features and TF-IDF features 

 

Step 3: Model Training 

 

 Encode disease labels using Label Encoder 

 Split data into training and testing sets 

 Apply SMOTE to handle class imbalance 

 Train XGBoost classifier with optimised parameters 

 Evaluate model performance 

 

Step 4: Disease Prediction 

 

 Convert user-selected symptoms to a binary vector 

 Generate TF-IDF representation of symptoms 

 Combine features as in training 

 Apply a trained model to predict disease 

 Calculate confidence score for prediction 

 

Step 5: Precaution Recommendation 

 

 Look up predicted disease in the precaution database 

 Retrieve associated precautions 

 Return disease prediction and precautions to the user 

 

Figure 3 presents the complete process flow of the symptom-based disease prediction system in terms of a detailed flowchart. 

The process begins at node START and progresses through critical stages. Users would be required to select their symptoms 

in a user interface as their first implication with the system. Symptoms are encoded via two processes: being binary encoded 

(presence or absence) or TF-IDF vectorisation (importance of symptom across diseases). Then, the system checks if the user 

has selected enough symptoms to make a prediction. If this is not enough, it indicates to the user that more symptoms must be 

selected. Thus, there is a feedback loop until the input data is adequate. Once it is determined that enough symptoms are 

selected, the system processes the encoded symptom data using the proposed XGBoost model, which examines patterns and 

relationships between symptoms to predict probable diseases. It provides forecasts along with confidence levels for each 

prediction, which will be displayed in the results interface. For each of these predicted diseases, the system accesses adequate 

precaution recommendations from its database. It presents them to the user, thus providing contextually and meaningfully 
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relevant information to address the user's needs. This intuitive workflow ensures a seamless user experience while utilising 

sophisticated machine learning techniques to perform accurate predictions and provide meaningful health information with 

minimal labelling. 

 

5. Experimental Results 

 

The experiments to evaluate the effectiveness of the proposed disease prediction model are discussed. Results show that it's 

quite effective in accurately predicting diseases from symptoms, which demonstrates that the proposed approach is practical 

and useful. 

 

5.1. Data Preparation and Analysis 

 

After thorough data cleaning, the integrity of the dataset is demonstrated in Figure 4. The comprehensive dataset contained 41 

distinct diseases and 131 unique symptoms, providing a rich knowledge base for model training (Figure 3). 

 

 
 

Figure 3: Flowchart depicting the process flow of the symptom-based disease prediction system, from user input to result 

display 

 

This diverse dataset encompassed common conditions, such as influenza and diabetes, as well as less common diseases, 

including tuberculosis and malaria. The symptom distribution analysis revealed interesting patterns. Some symptoms appeared 

across multiple diseases (like fever, fatigue, and headache), while others served as strong indicators for specific conditions. 

This distribution reinforced the need for the dual encoding approach, which combines binary representation with TF-IDF 

weighting to capture both general and disease-specific symptom patterns. 

 
 

Figure 4: Screenshot showing successful loading of the disease-symptom dataset with validation of data integrity 
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5.2. Model Performance 

 

The performance metrics of the XGBoost model on the test dataset were quite impressive. An accuracy of 70.12% and an F1-

score of 0.69 were achieved in the proposed study. These metrics indicate fairly good predictive capabilities across the classes 

of diseases, including both common and rare diseases. The confusion matrix analysis revealed that the proposed model performs 

exceptionally well on diseases with distinctive symptom patterns. Conditions like diabetes, malaria, and psoriasis showed 

prediction accuracy exceeding 90%, thanks to their relatively unique symptom constellations. Diseases with overlapping 

symptoms, such as different types of viral infections, showed slightly lower but still robust performance in the 80-85% range. 

The high precision score of 0.7012 indicates that the proposed model rarely misidentifies diseases, making it a reliable tool for 

preliminary diagnosis. Meanwhile, the strong recall value (0.850) demonstrates the model's ability to detect most instances of 

each disease, minimising missed diagnoses. The AUC-ROC score of 0.871 further confirms the model's excellent 

discrimination ability across disease classes. 

 

5.3. Web Application Implementation 

 

The model, as a user-friendly Streamlit web application, is deployed. Figure 5 showcases the application's intuitive interface, 

which allows users to select symptoms from a comprehensive list. The design emphasises simplicity and accessibility, ensuring 

that users with varying technical backgrounds can navigate the system effectively. 

 

 
 

Figure 5: Screenshot of the streamlit-based web application showing the user interface for symptom selection 

 

Application software features custom-designed UI forms, such as checkboxes that transform into shapes, responsive or dynamic 

layouts that adapt to the screen, as well as introductions that can guide users through symptom selection. 

 

 
 

Figure 6: Screenshot showing the process of selecting multiple symptoms in the web application 

 

Behind such an interface are custom features, but they are bundled within the trained model that processes the selection and 

provides instant feedback to users in real-time. 
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5.4. Symptom Selection Process 

 

Users can select multiple symptoms, and it's recommended to have 3-4 for optimal prediction accuracy, as demonstrated in 

Figure 6, from the provided list. The interface organises symptoms in a grid layout with four columns, making it easy to browse 

and select relevant symptoms. The symptom selection process incorporates several enhancements to the user experience. 

Symptoms are displayed in individual containers, each accompanied by a clear checkbox and a descriptive label. Visual 

feedback is provided when the mouse is hovered above the symptoms, and the design guides users toward making selections. 

When users select fewer than three symptoms, a little message reminding them to select more symptoms is displayed to ensure 

the accuracy of their predictions. 

 

5.5. Disease Prediction and Precautions 

 

After symptom selection, the proposed model generates predictions and displays potential diseases along with their 

corresponding confidence levels, as shown in Figure 7. The confidence levels help users understand the relative likelihood of 

different conditions based on their symptom inputs. The prediction interface displays the five most probable diseases based on 

the selected symptoms. Each prediction includes a confidence percentage and a qualitative confidence scale (Low, Moderate, 

High, or Very High) to help users interpret the outcomes. These confidence variables depend on careful thresholds: Very High 

(equal to or more than 80%), High (between 50% and 79%), Moderate (between 20% and 49%), and Low (below 20%). Users 

can select any of the predicted diseases to learn about precautions associated with that action, receiving possible 

recommendations for preventive care measures. This function brings about a considerable shift from what might be termed 

'learning prediction' to 'actionable feedback,' meaning that users can take appropriate action based on timely diagnosis and 

feedback. 

 

 
 

Figure 7: Screenshot displaying prediction results with confidence levels and precaution recommendations 

 

5.6. Precaution Recommendation 

 

For each predicted ailment, the proposed system provides specific recommendations grounded in medical guidelines. Such 

recommendations could include practical measures that enable a user to manage the condition or prevent complications. Table 

1 provides examples of diseases along with the precautions prescribed, as presented by the proposed system. These precautions 

provide immediate value to users, offering guidance for symptom management even before consulting a healthcare 

professional. The recommendations combine general health advice with condition-specific measures, creating a comprehensive 

support system for users. 

 

5.7. Comparative Analysis 

 

The proposed XGBoost-based model is compared with various alternative machine learning algorithms to validate the proposed 

approach. 
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Table 1: Disease precautions examples 

 

Disease Precautions 

Common Cold 1. Rest and adequate sleep, 2. Hydration with warm fluids 3. Gargling with salt water, 4. Avoiding close 

contact with others 

Diabetes 1. Regular blood sugar monitoring, 2. Balanced diet, 3. Physical activity, 4. Medication adherence, 5. 

Regular foot examinations 

Hypertension 1. Low-sodium diet, 2. Regular exercise 3. Stress management 4. Limiting alcohol consumption, 5. 

Regular blood pressure monitoring 

Migraine 1. Identifying and avoiding triggers, 2. Regular sleep schedule, 3. Stress management, 4. Staying 

hydrated. Resting in a dark, quiet room 

 

The comparative analysis is presented in Table 2, where the proposed method has emerged as the best-performing method in 

most evaluation aspects (Figure 8). 

 

 
 

Figure 8: Screenshot displaying the precautions for myocardial infarction 

 

XGBoost outperformed all alternative algorithms in both accuracy and F1 Score, while maintaining a reasonable training time. 

Random Forest delivered the second-best performance but required longer training time. 

 

Table 2: Comparative analysis of different algorithms 

 

Algorithm Accuracy F1-Score Training Time (s) 

XGBoost 0.70 0.69 14.34 

Random Forest 0.65 0.5 15.67 

Decision Tree 0.61 0.5 7.65 

 

Simpler algorithms, such as Decision Tree and Naive Bayes, trained faster but showed substantially lower prediction accuracy. 

This comparison confirms proposed algorithm selection, demonstrating that XGBoost provides the optimal balance between 

prediction accuracy and computational efficiency for the disease prediction task. The performance gap becomes particularly 

significant for diseases with complex symptom patterns, where XGBoost's ensemble approach captures subtle relationships 

that simpler algorithms missed. 

 

6. Conclusion and Future Work 

 

The research presented an AI-enhanced disease prediction system that facilitates initial diagnosis and provides precautionary 

recommendations through symptom analysis. It suggests using multi-label binarisation, TF-IDF vectorisation, and XGBoost 

classification simultaneously to achieve highly accurate predictions. The trials conducted validate the suggested approach, with 

a predictive accuracy of 70.12% and an F1 score of 0.69. These numbers demonstrate that the proposed system could be a 

valuable tool for medical diagnosis, particularly in areas where healthcare specialists are not readily available. The web app 

provides consumers with a preliminary disease evaluation and a recommendation for next steps. This increased access helps 

eliminate the bottleneck that occurs when symptoms appear, and qualified medical intervention can lead to better health 

outcomes through earlier intervention. The current system yields encouraging outcomes; however, numerous opportunities for 
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further improvement exist. By incorporating rare diseases and a broader range of symptom combinations into the proposed 

dataset, the model would become more comprehensive and effective.  

 

This extension would be especially helpful for communities that receive insufficient attention, where rare or neglected tropical 

diseases may be more prevalent. Explainable AI Integration: Utilising advanced explainable AI methods would enable us to 

understand the reasoning behind disease forecasts. This openness would help users trust the model and may provide healthcare 

providers with useful information about the symptom patterns that the model identifies as important. To demonstrate the utility 

of the technology in real-world healthcare settings, it should be evaluated in clinical trials. Working with doctors would help 

improve the system based on their clinical knowledge and set rules on how to use it correctly. In conclusion, the proposed AI-

based disease prediction system represents a significant step toward making healthcare diagnostics more accessible and 

effective. The proposed system suggests that it could aid in early disease identification and improve patient outcomes by 

utilising advanced machine learning techniques and a user-friendly interface. It doesn't replace a doctor's diagnosis, but it does 

connect people with fast information and advice, which could change how people approach and conduct basic healthcare 

assessments. 
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